Spanning $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ metalloligands with 1,4-dimercurated durene

Nicola E. Cameron ${ }^{\text {a }}$, Rachael A. Linklater ${ }^{\text {a }}$, William Henderson ${ }^{\text {a,* }}$, Brian K. Nicholson ${ }^{\text {a }}$, T.S. Andy Hor ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Waikato, Private Bag, 3105 Hamilton, New Zealand
${ }^{\mathrm{b}}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

A R T I C L E I N F O

Article history:

Received 24 April 2008
Received in revised form 2 September 2008
Accepted 2 September 2008
Available online 10 September 2008

Keywords:

Platinum complexes
Organomercury complexes
Sulfide complexes
Crystal structure

Abstract

Reaction of the metalloligand $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with 0.5 mol equivalents of durene-1,4-bis(mercuric acetate) $\left[\mathrm{AcOHgC}_{6} \mathrm{Me}_{4} \mathrm{HgOAc}\right]$ in methanol gives the polynuclear complex $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}(\mu-1,4-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]^{2+}$, isolated as its PF_{6}^{-}and BPh_{4}^{-}salts. Positive-ion ESI mass spectra indicate that $\left[\left\{\mathrm{Pt}_{2}(\mu-\right.\right.$ $\left.\left.\mathrm{S}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]^{2+}$ undergoes fragmentation by successive loss of PPh_{3} ligands, while the ESI mass spectrum of the BPh_{4}^{-}salt showed additional ions $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{HgC}_{6} \mathrm{Me}_{4} \mathrm{HgPh}\right)\right]^{+}$and $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right]^{+}$as a result of phenyl transfer from BPh_{4}^{-}to Hg . A single-crystal X-ray structure determination on $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]\left(\mathrm{BPh}_{4}\right)_{2}$ shows that the cation crystallises on a centre of symmetry, with structural features that are comparable to those of the previously characterised complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right] \mathrm{BPh}_{4}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The ability of the platinum(II) sulfido complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathbf{1}$ to act as a metalloligand is well established [1]. Closely related analogues with alternative phosphine ligands are known to behave in the same way [2-5]. Through such reactions, larger homo- and hetero-metallic sulfido-bridged aggregates of higher nuclearities can easily be assembled. We are interested in developing systematic methods for assembling larger assemblies containing $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ cores as a basic building block, because such assemblies are relatively rare [2,6,7], and reasoned that the use of organomercury complexes could offer a strategy to achieve this goal. A range of organomercury complexes has previously been reacted with $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, using electrospray ionisation mass spectrometry (ESI MS) as a powerful tool to screen reactions for the successful formation of (cationic) products [8]. Isolated complexes include the simple adducts $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right] \mathrm{BPh}_{4} 2$ [8], $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}-\right.$ $\mathrm{HgEt}^{2} \mathrm{PF}_{6}$ [8], $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgFc}\right] \mathrm{PF}_{6} \quad[9] \quad\left[\mathrm{Fc}=\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$, the dimercurated ferrocene derivative $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Hg}_{2} \mathrm{Fc}^{*}\right]\left(\mathrm{PF}_{6}\right)_{2}[9]\left[\mathrm{Fc}{ }^{*}=\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right]$ and the organomercury adducts of the monobenzylated $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ core, $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{SCH}_{2} \mathrm{Ph}\right)\right.$ -$\left.(\mu-\mathrm{SHgR})\left(\mathrm{PPh}_{3}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{R}=\mathrm{Ph}, \mathrm{Fc})$.[10] In this paper, we describe the reactivity of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ towards dimercurated durene (1,2,4,5-tetramethylbenzene), $\mathrm{AcOHgC}_{6} \mathrm{Me}_{4} \mathrm{HgOAc} 3$, which leads

[^0]to the formation of hexametallic assemblies of two $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ units spanned by the dimercurated arene moiety $\left[\mathrm{HgC}_{6} \mathrm{Me}_{4} \mathrm{Hg}\right]^{2+}$. The availability of a wide range of poly-mercurated organic [11,12] and organometallic $[13,14]$ compounds suggests that the assembly of even larger $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ - Hg aggregates might ultimately be possible by this methodology.

2. Results and discussion

The reaction of a methanol suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathbf{1}$ with 0.5 mol equivalents of durene-1,4-bis(mercuric acetate) $\mathbf{3}$ leads to fairly rapid formation of a bright yellow solution which was shown by positive-ion ESI MS to contain almost exclusively the cation $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]^{2+}$ [observed m / z 1769.754, calculated m / z 1769.755]. This complex contains two $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ metalloligands bridged by the $\left[p-\mathrm{HgC}_{6} \mathrm{Me}_{4} \mathrm{Hg}\right]^{2+}$ fragment. The product was readily isolated from solution as its hexafluorophosphate salt $\mathbf{4 a}$ by addition of excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to the filtered reaction solution. The positive-ion ESI mass spectrum of isolated 4a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ showed exclusively $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}(\mu-1,4-\right.$ $\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}$)] ${ }^{2+}$ at low cone voltages (up to 50 V), but as the cone voltage is increased, successive loss of PPh_{3} ligands occurs to give the series of dications $\left.[\mathrm{M}-\mathbf{n P P h}]_{3}\right]^{2+}(\mathbf{n}, m / z: 0,1769.5 ; \mathbf{1}, 1638.5$; $2,1507.5 ; 3,1376.5 ; 4,1245.5$) at a cone voltage of 90 V . The complex shows a single resonance in its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, showing coupling to ${ }^{195} \mathrm{Pt}$ of 3038 Hz , which is essentially the same as that observed for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right] \mathrm{PF}_{6}$ [8].

4a, $\mathrm{X}=\mathrm{PF}_{6}$
4b, $\mathrm{X}=\mathrm{BPh}_{4}$

5

6

The $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]^{2+}$ cation can also be isolated as its tetraphenylborate salt $\mathbf{4 b}$, by addition of excess NaB Ph_{4} to the reaction solution. However in this case, the isolated solid product was found to contain additional minor species when analysed by ESI MS. One species at $m / z 2113$ (ca. 10\% relative intensity) was not observed at all in the reaction solution. Exact mass measurement indicates that this species is the phenyl-mercury adduct $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{HgC}_{6} \mathrm{Me}_{4} \mathrm{HgPh}\right)\right]^{+} 5$ (observed m / z 2113.326, calculated $m / z 2113.311$). A number of other very minor species were observed in isolated $\mathbf{4 b}$, including the monocationic phenyl derivative $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})(\mu-\mathrm{SHgPh})\left(\mathrm{PPh}_{3}\right)_{4}\right]^{+} \mathbf{2}$ (observed $m / z 1781.247$, calculated m / z 1781.248). The source of the phenyl group is undoubtedly the BPh_{4}^{-}ion, since the phenylating ability of tetra-
phenylborate is well known [15-18], including phenylation of mercury species, primarily for analytical purposes [19-22]. Consistent with this, the reaction of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with one equivalent of $\mathrm{Hg}(\mathrm{OAc})_{2}$ followed by precipitation with NaBPh_{4} gave a yellow product that showed $2(m / z 1781,100 \%$ relative intensity) together with the known species $[23,24]\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2} \mathrm{Hg}\right]^{2+}$ ($m / z 1603.5,85 \%$ relative intensity) as the only significant species. The isolated BPh_{4}^{-}salt $\mathbf{4 b}$ also yielded an ion identified as the mono-mercurated species $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{H}\right)\right]^{+} 6$ (observed m / z 1837.307, calculated $m / z 1837.310$); this species was observed as a trace component of the reaction solution before precipitation, but as a more significant component of the tetraphenyl-borate-precipitated solid. This species could arise from traces of
mono-mercurated durene in the starting material, or from $\mathrm{Hg}-\mathrm{C}$ bond cleavage in the product mediated by BPh_{4}^{-}. Recrystallisation of $\mathbf{4 b}$ from dichloromethane-diethyl ether furnished a relatively pure sample of the compound.

In order to characterise the $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}-\mathrm{Hg}$ binding in this polymetallic system, and to compare it with the mono-mercury complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right]^{+} 2$ [8], an X-ray structural determination of $\mathbf{4 b}$ was carried out; the structure of the cation is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. The cation of complex $\mathbf{4 b}$ crystallises on a centre of symmetry, so only half of the cation is unique. Overall, the structural features are similar to those of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right]^{+}$2, with the mercury in each complex being strongly coordinated to one sulfur and weakly coordinated to the other, resulting in a 'T-shaped' coordination geometry. Thus, in $\mathbf{4 b}$ the $\mathrm{Hg}-\mathrm{S}(1)$ and $\mathrm{Hg}-\mathrm{S}(2)$ bond distances are 2.3990(7) and 2.9473(7) \AA, with an $\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{C}(1)$ bond angle of $173.49(9)^{\circ}$, compared to the corresponding $\mathrm{Hg}-\mathrm{S}$ bond distances of $2.4709(12)$ and $2.9286(12) \AA$, and an S-Hg-C bond angle of $174.59(16)^{\circ}$ in $\mathbf{2}$. The asymmetric mercury binding is, not unexpectedly, transmitted to the $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ core of $\mathbf{4 b}$, with sulfur $\mathrm{S}(2)$ [which is more weakly coordinated to Hg] forming the shorter Pt-S bonds [Pt(1)-S(2) 2.3232(7) and $\operatorname{Pt}(2)-S(2) 2.3519(7) \AA$, compared with $\operatorname{Pt}(1)-S(1) 2.3675(7)$ and $\operatorname{Pt}(2)-S(1) 2.3797(7) \AA \AA]$. Consequently, the Pt-P bonds trans to $\mathrm{S}(2)$ are slightly longer than those trans to $\mathrm{S}(1)$; for example $\mathrm{Pt}(1)-\mathrm{P}(1)$ [trans to $\mathrm{S}(2)$] is $2.2939(7) \AA$, while $\operatorname{Pt}(1)-\mathrm{P}(2)$ [trans to $\mathrm{S}(1)$] is 2.2661(7) \AA. This indicates that sulfur $S(2)$ displays a stronger trans-influence at the Pt centre than $S(1)$. The same trend is observed in the phenyl derivative 2.

Fig. 1. Molecular structure of the cation of $\mathbf{4 b} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with the atom numbering scheme. Phenyl rings of the triphenylphosphine ligands have been omitted for clarity.

Table 1
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{4 b} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.2939(7)$	$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.2661(7)$
$\mathrm{Pt}(2)-\mathrm{P}(3)$	$2.2767(7)$	$\mathrm{Pt}(2)-\mathrm{P}(4)$	$2.2913(8)$
$\mathrm{Pt}(1)-\mathrm{S}(1)$	$2.3675(7)$	$\mathrm{Pt}(1)-\mathrm{S}(2)$	$2.3232(7)$
$\mathrm{Pt}(2)-\mathrm{S}(1)$	$2.3797(7)$	$\mathrm{Pt}(2)-\mathrm{S}(2)$	$2.3519(7)$
$\mathrm{Hg}(1)-\mathrm{C}(1)$	$2.080(3)$	$\mathrm{Hg}(1)-\mathrm{S}(1)$	$2.3990(7)$
$\mathrm{Hg}(1)-\mathrm{S}(2)$	$2.9473(7)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$1.399(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.402(4)$	$\mathrm{C}(2)-\mathrm{C}\left(4^{\prime}\right)$	$1.406(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.515(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.509(4)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$98.84(3)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{S}(1)$	$87.60(2)$
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{S}(2)$	$90.62(3)$	$\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{S}(2)$	$83.31(2)$
$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$102.29(3)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{S}(2)$	$83.66(3)$
$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{S}(1)$	$91.65(3)$	$\mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{S}(2)$	$82.44(2)$
$\mathrm{Pt}(1)-\mathrm{S}(1)-\mathrm{Pt}(2)$	$86.16(2)$	$\mathrm{Pt}(1)-\mathrm{S}(2)-\mathrm{Pt}(2)$	$87.82(2)$
$\mathrm{Pt}(1)-\mathrm{S}(1)-\mathrm{Hg}(1)$	$94.56(3)$	$\mathrm{Pt}(1)-\mathrm{S}(2)-\mathrm{Hg}(1)$	$82.36(2)$
$\mathrm{Pt}(2)-\mathrm{S}(1)-\mathrm{Hg}(1)$	$79.97(2)$	$\mathrm{Pt}(2)-\mathrm{S}(2)-\mathrm{Hg}(1)$	$69.794(18)$
$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{S}(2)$	$70.50(2)$	$\mathrm{S}(1)-\mathrm{Hg}(1)-\mathrm{C}(1)$	$173.49(9)$
$\mathrm{S}(2)-\mathrm{Hg}(1)-\mathrm{C}(1)$	$112.13(8)$	$\mathrm{Hg}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.4(2)$
$\mathrm{Hg}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	$119.3(2)$		

The Hg...Pt non-bonded distances in 4b [3.0707(1) and $3.5020(1) \AA$] can be compared with 3.078 and $3.515 \AA$ in 2 , indicating that in both complexes the Hg -arene group is tilted towards one of the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ groups. The fold angle [angle between the two S-Pt-S planes] of the $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ butterfly of $\mathbf{4 b}$ [133.4 ${ }^{\circ}$] is very similar to the corresponding angle of 132.9° in $\mathbf{2}$. The durene ring is also twisted at an angle of 46.6° to the $\mathrm{Hg}-\mathrm{S}(1)-\mathrm{S}(2)$ plane, presumably to minimise steric interactions.

3. Experimental

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathbf{1}$ was prepared by the literature procedure from cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ in benzene suspension, [25] while the organomercury compound $1,4-\mathrm{AcOHgC}_{6} \mathrm{Me}_{4} \mathrm{HgOAc}$ 3 was prepared by mercuration of 1,2,4,5-tetramethylbenzene (durene, Aldrich) with $\mathrm{Hg}(\mathrm{OAc})_{2}$, as described in the literature [26]. Sodium tetraphenylborate (BDH) and ammonium hexafluorophosphate (Aldrich) were used as supplied. Reactions were carried out in LR grade methanol, without exclusion of light, air or moisture.

Routine ESI mass spectra were recorded in positive-ion mode on a VG Platform II instrument using a methanol mobile phase. Isolated products were dissolved in a couple of drops of dichloromethane prior to dilution to $c a .0 .1 \mathrm{mg} \mathrm{mL}^{-1}$ with methanol. High resolution mass measurements were made on a Bruker Daltonics MicrOTOF instrument, calibrated using a sodium formate solution. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker AC300P instrument at 121.5 MHz in CDCl_{3} solution, and spectra were referenced relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$. Elemental microanalyses were performed by the Campbell Microanalytical Laboratory, Department of Chemistry, University of Otago, New Zealand.

3.1. Synthesis of $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \mathbf{4 a}$

A suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathbf{1}(300 \mathrm{mg}, 0.200 \mathrm{mmol})$ and 3 ($65 \mathrm{mg}, 0.100 \mathrm{mmol}$) in methanol (30 mL) was stirred at room temperature for 2 h , giving a bright yellow solution. ESI MS showed a single peak due to the product cation $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}(\mu-1,4-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]^{2+}$. After filtration to remove a trace of insoluble grey matter, solid $\mathrm{NH}_{4} \mathrm{PF}_{6}(200 \mathrm{mg}, 1.23 \mathrm{mmol})$ was added to the stirred filtrate, giving a yellow precipitate. Water (20 mL) was added to assist the precipitation, the product isolated by filtration, washed successively with water ($2 \times 20 \mathrm{~mL}$) and diethyl ether $(2 \times 20 \mathrm{~mL})$, and dried in vacuo to give $\mathbf{4 a}(295 \mathrm{mg}, 77 \%)$ as a bright yellow solid. Found: C, 47.7; H, 3.6. $\mathrm{C}_{154} \mathrm{H}_{132} \mathrm{~F}_{12} \mathrm{Hg}_{2} \mathrm{P}_{10} \mathrm{Pt}_{4} \mathrm{~S}_{4}$ requires C, 48.3; H, 3.5\%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right], \delta 20.1$ [s, ${ }^{1} \mathrm{~J}(\mathrm{PtP})$ $3038 \mathrm{~Hz}] .{ }^{1} \mathrm{H}$ NMR, $\delta 7.78-7.08(\mathrm{~m}, \mathrm{Ph})$ and $2.57\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

3.2. Synthesis of $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}\left(\mu-1,4-\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right)\right]\left(\mathrm{BPh}_{4}\right)_{2} \mathbf{4 b}$

Following the procedure for $\mathbf{4 a},\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathbf{1}(300 \mathrm{mg}$, 0.200 mmol) with 3 ($65 \mathrm{mg}, 0.100 \mathrm{mmol}$) were reacted. To the resulting yellow solution after filtration was added solid NaBPh_{4} ($200 \mathrm{mg}, 0.585 \mathrm{mmol}$), the product filtered, washed successively with methanol (20 mL), water (20 mL), methanol (20 mL) and diethyl ether (20 mL) and dried in vacuo to give $\mathbf{4 b}$ ($305 \mathrm{mg}, 73 \%$) as a yellow powder. Found: C, 57.2; H, 4.1\%. $\mathrm{C}_{202} \mathrm{H}_{172} \mathrm{~B}_{2} \mathrm{Hg}_{2} \mathrm{P}_{8} \mathrm{Pt}_{4} \mathrm{~S}_{4}$ requires C, 58.1; H, 4.2. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR [(CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}\right], \delta 21.3$ [s, ${ }^{1} \mathrm{~J}(\mathrm{PtP})$ $3038 \mathrm{~Hz}] .{ }^{1} \mathrm{H}$ NMR, $\delta 7.46-6.85(\mathrm{~m}, \mathrm{Ph})$ and $2.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

3.3. Reaction of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with $\mathrm{Hg}(\mathrm{OAc})_{2}$ and NaBPh_{4}

Mercury(II) acetate ($21.6 \mathrm{mg}, 0.068 \mathrm{mmol}$) was added to a stirred suspension of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](102 \mathrm{mg}, 0.068 \mathrm{mmol})$ in

Table 2
Crystal, collection and refinement data for $\mathbf{4 b} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Crystal data		
Empirical formula		$\mathrm{C}_{206} \mathrm{H}_{180} \mathrm{~B}_{2} \mathrm{Cl}_{8} \mathrm{Hg}_{2} \mathrm{P}_{8} \mathrm{Pt}_{4} \mathrm{~S}_{4}$
Formula weight		4518.26
Crystal system		Monoclinic
Space group		$P 2_{1 / c}$
Unit cell dimensions		
$a(\AA)$		13.5909(1)
b (\AA)		40.2714(4)
$c(A)$		16.3746(2)
$\beta\left({ }^{\circ}\right)$		95.575(1)
$V\left(\AA^{3}\right)$		8919.83(16)
Z		2
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$		1.682
Data collection		
Crystal size (mm)		$0.28 \times 0.26 \times 0.26$
Radiation, wavelength (A)		Mo K $\alpha, \lambda=0.71073$
Temperature (K)		89(2)
θ Range for data collection (${ }^{\circ}$)		1.81-32.62
Reflections collected		180006
Independent reflections		$32403\left[R_{\text {int }}=0.0407\right]$
Absorption coefficient (mm^{-1})		5.133
$T_{\text {max,min }}$		1.00, 0.69
$F(000)$		4436
Structure analysis and refinement		
Solution by:		Direct methods
Refinement method		Full-matrix least-squares on F^{2}
Data/restraints/parameters		32403/0/1056
Goodness-of-fit on F^{2}		1.095
Final R indices [$I>2 \sigma(I)]$	R_{1}	0.0328
	$w R_{2}$	0.0662
R indices (all data)	R_{1}	0.0465
	$w R_{2}$	0.0697
Largest difference peak (e \AA^{-3})		3.122
Largest difference hole (e \AA^{-3})		-1.449

methanol (20 mL), whereupon the reactants rapidly dissolved to give a clear yellow solution. After stirring for $1 \mathrm{~h}, \mathrm{NaBPh}_{4}$ ($200 \mathrm{mg}, 0.585 \mathrm{mmol}$) was added giving a yellow precipitate that was isolated by filtration, washed with water (10 mL) and methanol (10 mL) and dried in vacuo to give a yellow powder (105 mg). ESI MS analysis showed $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{HgPh}\right]^{+} 2(\mathrm{~m} / \mathrm{z} \mathrm{1781}$, 100%) and $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2} \mathrm{Hg}\right]^{2+}(\mathrm{m} / \mathrm{z} 1603.5,85 \%)$.

3.4. X-ray structure determination of $\left[\left\{\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right\}_{2}(\mu-1,4-\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{4} \mathrm{Hg}_{2}\right) \mathrm{J}\left(\mathrm{BPh}_{4}\right)_{2} \mathbf{4 b} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Bright yellow crystals suitable for an X-ray structural study were obtained by vapour diffusion of diethyl ether into a dichloromethane solution of the complex at room temperature. Intensity data were obtained on a Bruker Apex II CCD diffractometer. Crystal, collection and refinement data are given in Table 2. The complex crystallises with four molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per cation.

Acknowledgements

We thank the University of Waikato (UW) and the National University of Singapore (NUS) for financial support of this work, including Summer Research Scholarships (NEC and RAL). We also thank Dr. Tania Groutso (University of Auckland) for collection of the X-ray data set.

Appendix A. Supplementary material

CCDC 685996 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2008.09.013.

References

[1] S.-W.A. Fong, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (1999) 639.
[2] V.W.-W. Yam, K.-L. Yu, E.C.-C. Cheng, P.K.-Y. Yeung, K.-K. Cheung, N. Zhu, Chem. Eur. J. 8 (2002) 4122.
[3] P. González-Duarte, A. Lledós, R. Mas-Ballesté, Eur. J. Inorg. Chem. (2004) 3585.
[4] H. Brunner, M. Weber, M. Zabel, J. Organomet. Chem. 684 (2003) 6.
[5] Z. Li, K.F. Mok, T.S.A. Hor, J. Organomet. Chem. 682 (2003) 73.
[6] Z. Li, W. Zhang, H. Liu, K.F. Mok, T.S.A. Hor, Inorg. Chem. 42 (2003) 8481.
[7] R. Mas-Ballesté, W. Clegg, A. Lledós, P. González-Duarte, Eur. J. Inorg. Chem. (2004) 3223.
[8] S.-W.A. Fong, W.T. Yap, J.J. Vittal, T.S.A. Hor, W. Henderson, A.G. Oliver, C.E.F. Rickard, J. Chem. Soc., Dalton Trans. (2001) 1986.
[9] X. Xu, S.-W.A. Fong, Z. Li, Z.-H. Loh, F. Zhao, J.J. Vittal, W. Henderson, S.-B. Khoo, T.S.A. Hor, Inorg. Chem. 41 (2002) 6838.
[10] W. Henderson, B. K. Nicholson, S. M. Devoy and T. S. A. Hor, Inorg. Chim. Acta, in press.
[11] R.J. Bertino, G.B. Deacon, J. Organomet. Chem. 67 (1974) C61.
[12] D. Grdenić, B. Kamenar, B. Korpar-Čolig, M. Sikirica, G. Jovanovski, J. Chem. Soc., Chem. Commun. (1974) 646.
[13] S.A. Kur, M.J. Heeg, C.H. Winter, Organometallics 13 (1994) 1865.
[14] Y.-H. Han, M.J. Heeg, C.H. Winter, Organometallics 13 (1994) 3009.
[15] N.E. Leadbeater, M. Marco, J. Org. Chem. 68 (2003) 5660.
[16] M. Ueda, N. Miyaura, J. Organomet. Chem. 595 (2000) 31.
[17] M. Aresta, E. Quaranta, I. Tommasi, New J. Chem. 21 (1997) 595.
[18] A. Sladek, S. Hofreiter, M. Paul, H. Schmidbaur, J. Organomet. Chem. 501 (1995) 47.
[19] Y. Cai, S. Monsalud, K.G. Furton, Chromatographia 52 (2000) 82.
[20] P. Grinberg, R.C. Campos, Z. Mester, R.E. Sturgeon, J. Analyt. Atom. Spectrom. 18 (2003) 902.
[21] S. Mishra, R.M. Tripathi, S. Bhalke, V.K. Shukla, V.D. Puranik, Anal. Chim. Acta 551 (2005) 192.
[22] Y. Cai, S. Monsalud, R. Jaffé, R.D. Jones, J. Chromatogr. A 876 (2000) 147.
[23] C.E. Briant, T.S.A. Hor, N.D. Howells, D.M.P. Mingos, J. Chem. Soc., Chem. Commun. (1983) 1118.
[24] Z. Li, X. Xu, S.B. Khoo, K.F. Mok, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (2000) 2901.
[25] R. Ugo, G. La Monica, S. Cenini, A. Segre, F. Conti, J. Chem. Soc. A (1971) 522.
[26] H. Sawatzky, G.F. Wright, Can. J. Chem. 36 (1958) 1555.

[^0]: * Corresponding author. Fax: +64 78384219.

 E-mail address: w.henderson@waikato.ac.nz (W. Henderson).

